


January 12, 2018

# I-80 Corridor Analysis: Exemplifying the Need for Infrastructure Investment



Mary Craighead, AICP

## EXECUTIVE SUMMARY

Built in the 1960s as an original portion of the interstate highway system, Interstate 80 (I-80) near Joliet is a crucial east-west corridor for both the Chicago region and the nation. However, inadequate infrastructure funding on both the state and federal levels has left travelers in the lurch, subjecting them to not only the inconvenience of congestion and inefficient roadways, but also safety issues.

A project to enhance and expand a 16-mile stretch of I-80 near Joliet has been proposed, yet the needed funding is substantial and not available. The proposed project spans I-80 between Ridge Road and US 30. This [Illinois Economic Policy Institute \(ILEPI\)](#) report explores the need behind this proposed project and its potential economic impact.

### **The design of the roadway is not sufficient to handle existing traffic.**

- The existing roadway is largely two-lanes in each direction and has multiple narrow bridges lacking shoulders.
- It requires motorists to drop to 55 MPH between US 30 and Larkin Avenue and 45 MPH east of US 52.
- Of the 39 total bridges, 26 percent are “structurally deficient” and 46 percent are “functionally obsolete.”
- Approximately 20 percent of total traffic volumes are comprised of heavy trucks.

### **Safety remains a primary concern.**

- 37 fatal crashes occurred between 2001 and 2016.
- Compared to I-80 near Tinley Park, this stretch of I-80 consistently has higher fatal and overall crash rates.
- Crash rates are greater and more consistent near Center Street and Route 53.

### **The southwest suburbs are growing quickly and growth is only expected to continue.**

- Between 2000 and 2010, all but one municipality impacted by the proposed project grew at a rate larger than that of Will County and the CMAP region.
- Minooka and Shorewood grew at rates of 175% and 103%, respectively, between 2000 and 2010.
- By 2040, the populations of Will and Kendall Counties are expected to grow by 76% and 100%, respectively, while the CMAP region overall is only anticipated to grow by 31%.
- The amount of land developed as industrial and warehousing/distribution has increased between 2001 and 2013.

### **The construction of improvements along I-80 will create jobs and benefit the economy.**

- The short-term improvements between FY18-20 will create 279 jobs per year and contribute over \$46 million to the local economy.
- The long-term proposed improvements will produce over 2,400 jobs per year, including 1,200 construction jobs and 266 engineering and related jobs.
- Over \$13 million in state income tax revenue and almost \$15 million in state sales tax revenue will be generated.

I-80 near Joliet is a prime example of a roadway in desperate need of improvements. Future growth is only going to worsen the roadway's conditions and put further stress on residents and businesses. As policymakers continue to debate new infrastructure funding solutions, roadways like I-80 should remain at the forefront of their minds. It is important to remember: this roadway is only one example. Countless other projects across the state are equally as vital, yet the same issue – inadequate funding – will continue to plague communities until changes are made.

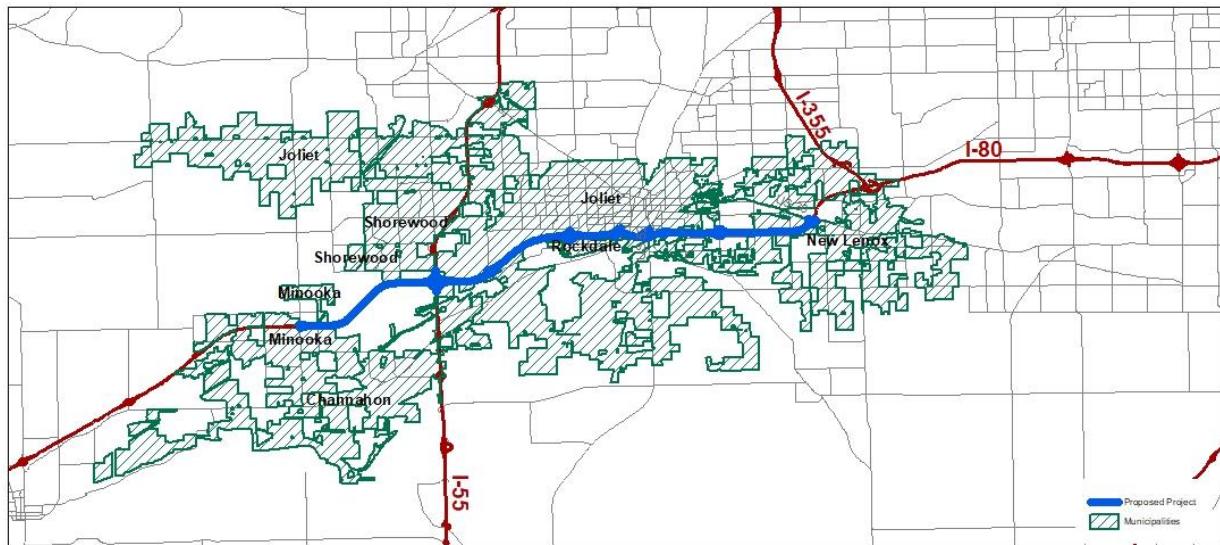
## TABLE OF CONTENTS

|                                                                  |    |
|------------------------------------------------------------------|----|
| <b>Executive Summary</b> .....                                   | i  |
| <b>Table of Contents</b> .....                                   | ii |
| <b>About the Author</b> .....                                    | ii |
| <b>Introduction</b> .....                                        | 1  |
| <b>Project Overview</b> .....                                    | 1  |
| <b>Existing Conditions</b> .....                                 | 2  |
| <i>Design</i> .....                                              | 2  |
| <i>Traffic Volumes</i> .....                                     | 2  |
| <i>Congestion</i> .....                                          | 3  |
| <i>Bridge Conditions</i> .....                                   | 5  |
| <b>Safety Concerns</b> .....                                     | 5  |
| <b>A Growing Region</b> .....                                    | 10 |
| <i>Past Growth</i> .....                                         | 10 |
| <i>Future Growth</i> .....                                       | 12 |
| <i>Industrial and Warehousing/Distribution Development</i> ..... | 12 |
| <b>Economic Impact</b> .....                                     | 12 |
| <b>Conclusion</b> .....                                          | 14 |
| <b>References</b> .....                                          | 15 |

## ABOUT THE AUTHOR

**Mary Craighead**, AICP is the Transportation Policy Analyst at the Illinois Economic Policy Institute. Prior to joining ILEPI, she served as the Coordinator for the Victoria, TX Metropolitan Planning Organization and Senior Transportation Planner for the City of Victoria, TX. She earned a Master of Urban Planning and Graduate Certificate in Transportation Planning from Texas A&M University and a Bachelor of Science in Mathematics and Economics from the University of Evansville.

## INTRODUCTION


Built in the 1960s as an original portion of the interstate highway system, Interstate 80 (I-80) near Joliet is a crucial east-west corridor for both the Chicago region and the nation. The corridor handles heavy traffic ranging from commuters and cross-country travelers to vital freight traffic, and thus keeping the roadway in prime condition is of the utmost importance. Unfortunately, inadequate transportation and infrastructure funding on both the state and federal levels has left travelers in the lurch, subjecting them to not only the inconvenience of congestion and inefficient roadways, but also safety issues. As Joliet and the greater southwest Chicagoland suburbs are expected to continue growing, adequate investment in maintenance and mobility needs are necessary.

A project to enhance and expand a 16-mile stretch of I-80 near Joliet has been proposed by the Illinois Department of Transportation (IDOT) and Chicago Metropolitan Agency for Planning (CMAP), yet the needed funding to complete all repairs is substantial and not available. This [Illinois Economic Policy Institute \(ILEPI\)](#) report explores the need behind this proposed project and its potential economic impact.

## PROJECT OVERVIEW

The proposed project spans I-80 between Ridge Road and US 30, as shown in Figure 1. It intersects six municipalities (Channahon, Joliet, Minooka, New Lenox, Rockdale, and Shorewood) and traverses four waterways, including the Des Plaines River (IDOT, 2015). Currently IDOT is undergoing two studies related to this corridor: a long-term study and a short-term study.

**Figure 1: Proposed Project Location and Adjacent Municipalities**



Source(s): U.S. Census Bureau (municipalities); IDOT, 2017c (roadway network)

Understanding that it will take years to fully fund and implement a complete solution to the identified deficiencies, the short-term study recommended several measures to improve the pavement, structural, and safety needs (IDOT, 2017a). Proposed improvements that are currently funded in IDOT's 2018-2023 Highway Improvement Program include bridge replacements and improvements, structure widening, and limited reconstruction (IDOT, 2017b).

Under the long-term evaluation, IDOT is presently in the process of completing a preliminary engineering and environmental study to evaluate both existing and future needs of the I-80 corridor. Various alternatives are under consideration and out for public comment; a preferred alternative is expected to be selected in 2018.

While a variety of alternatives are still being considered, CMAP identified the addition of lanes between Ridge Road and US 30 as a proposed major capital project in their GO TO 2040 long-range plan (CMAP, 2014a). Furthermore, the project is included in CMAP's 2014-2019 Transportation Improvement Program with a total project cost of \$1,454,450,000. While over \$1.3 billion of that is programmed for a timeframe past the year 2021 and does not have an existing funding source, it provides a glimpse into the monumental undertaking of improving this stretch of I-80 (CMAP, 2017a).

## EXISTING CONDITIONS

### *Design*

The 16-mile stretch of I-80 traversing Joliet currently has two lanes traveling in each direction – with limited portions having one additional lane – and several narrow bridges lacking shoulders. The roadway has several bends and turns requiring motorists to travel at a slower speed than is common on an interstate highway. As illustrated by Figure 2, motorists are required to drop to 55 MPH between US 30 and Larkin Avenue, with a small segment just east of US 52 dropping to 45 MPH.

**Figure 2: Posted Speed Limits**



Source(s): IDOT, 2017c (interstate speeds, roadway network)


### *Traffic Volumes*

The amount of average daily traffic traveling on this stretch of roadway gradually increases approaching the east. As illustrated in Figure 3, west of I-55, daily traffic volumes remain below 60,000 vehicles, however they increase to over 60,000 between I-55 and US 30. Traffic continues to increase to over 90,000 and 120,000 as the roadway moves east of US 30 and I-355, respectively.

While traffic volumes alone are important, it is also vital to understand the type of traffic travelling. Figure 4 shows, the majority of bridges along I-80 carry heavy truck traffic; specifically, of the 39

bridges, 82 percent have trucks accounting for more than 20 percent of total traffic volumes. By comparison, nearby I-57 just south of I-80 only has truck percentages in the single digits.

**Figure 3: Annual Average Daily Traffic (AADT), 2016**

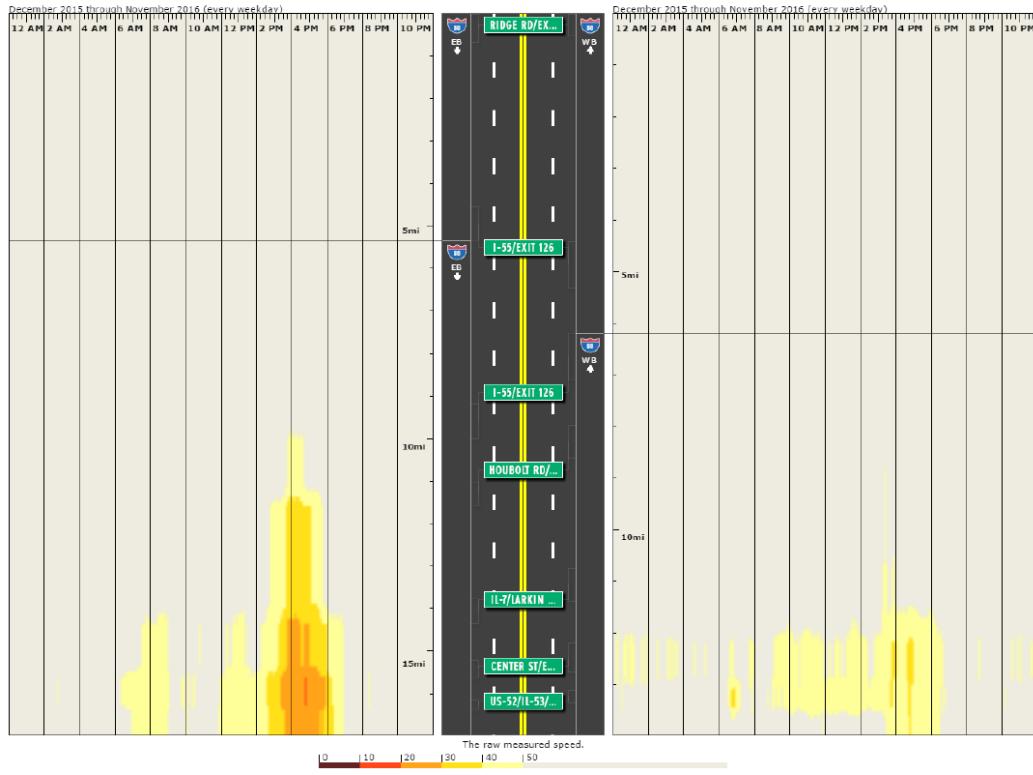


Source(s): IDOT, 2017c (annual average daily traffic, roadway network)

**Figure 4: Truck Traffic as Percentage of total AADT, 2016**

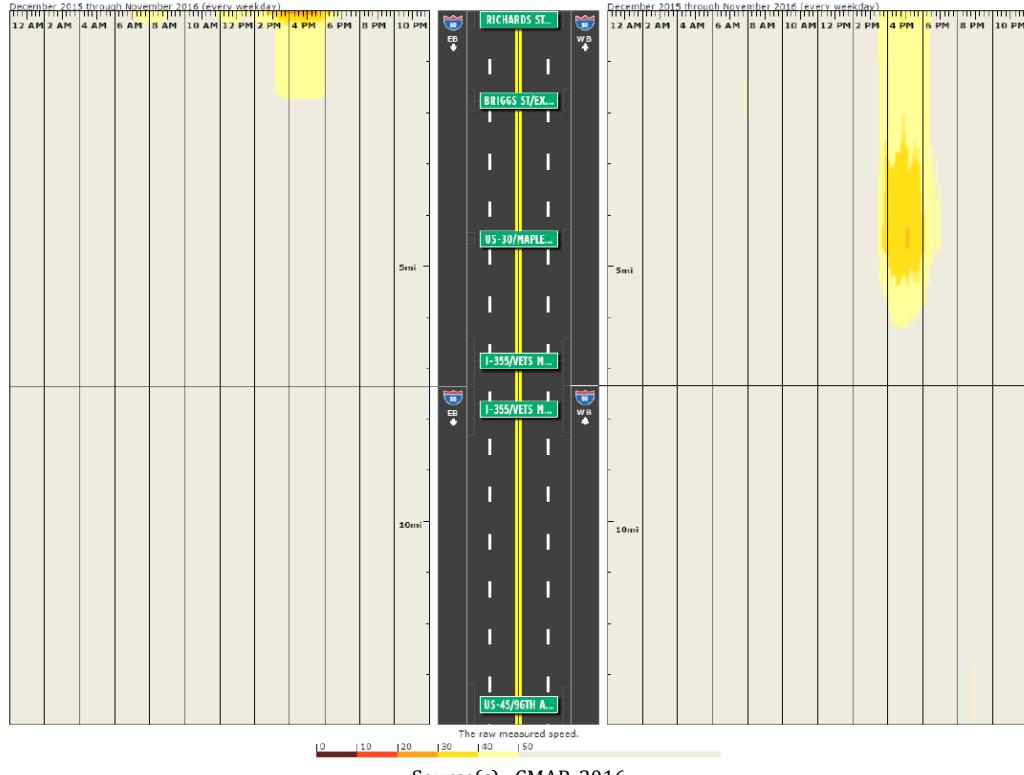


Source(s): IDOT, 2017c (annual average daily traffic, roadway network); IDOT, 2017d (truck traffic by bridge)


### Congestion

Figures 5 and 6 illustrate weekday congestion experienced between December 2015 and November 2016. Traveling eastbound, the heaviest period extends between 2:00pm and 6:00pm between Houbolt Road and Briggs Street, with speeds dipping to 20 MPH at times. Westbound experiences similar congestion between 3:00pm and 5:00 pm between US Route 30 and Briggs Street. It should also be noted that there is a noticeable slowdown of speeds across most times near Center Street and Briggs Street likely due to the narrow bridge crossing the Des Plaines River and bend in the road that requires the 45 MPH speed limit.

## Figures 5 and 6: Congestion Scans for Portions of I-80, 2016


Speed on I-80 between IL-47/Exit 112 and I-55/Exit 126 and I-80 between I-55/Exit 126 and Richards St/Exit 133 using NPMRDS (Trucks and passenger vehicles) data

Averaged by 5 minutes for December 2015 through November 2016 (every weekday)



Speed on I-80 between Richards St/Exit 133 and I-355/Vets Memi Tollway/Exit 140 and I-80 between I-355/Vets Memi Tollway/Exit 140 and US-45/96th Ave/Exit 145 using NPMRDS (Trucks and passenger vehicles) data

Averaged by 5 minutes for December 2015 through November 2016 (every weekday)



Source(s): CMAP, 2016

### Bridge Conditions

This 16-mile stretch of I-80 has 39 bridges, of which 10 (26 percent) are considered “structurally deficient.” IDOT defines structurally deficient under their Bridge Information System as a bridge that has significant load-carrying elements in poor condition. While it does not immediately suggest that the bridge is unsafe, it does indicate that the bridge requires significant maintenance and repair to remain open to the public and will eventually require rehabilitation or replacement (IDOT, 2017d).

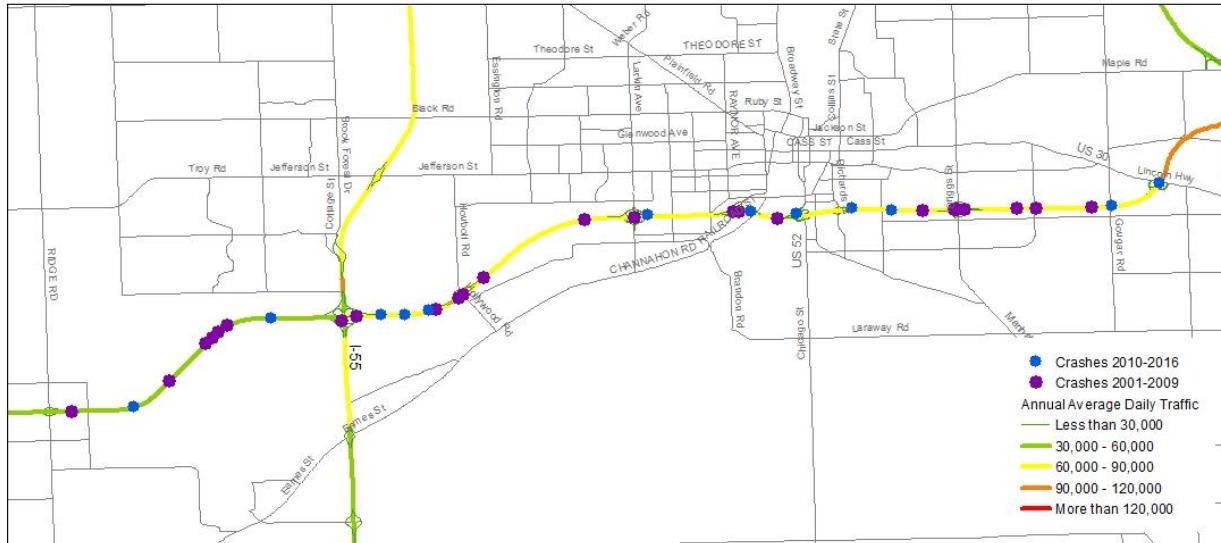
Furthermore, of the 39 bridges, 18 (46 percent) are considered “functionally obsolete.” IDOT defines those bridges as incorrectly designed for current traffic. While the bridge was adequately designed when originally built, due to a change in traffic demands, the bridge’s design is no longer sufficient. For example, the requirement for shoulder widths has increased over the years. However, these bridges do not conform to that current requirement, thus leading to undesirable driving conditions (IDOT, 2017d).

IDOT also rates each bridge on the following four factors to generate a “bridge sufficiency rating”: (1) structural adequacy and safety, (2) serviceability and functional obsolescence, (3) essentiality for public use, and (4) special reductions (based on certain limiting features). The rating is a number between 0 and 100, with 100 being an entirely sufficient bridge. Figure 7 illustrates the ratings for all bridges on I-80 between Ridge Road and US 30. While 11 bridges have a rating of 80 or higher, 5 fall below 50 and 10 have a rating between 50 and 70.

**Figure 7: Bridge Sufficiency Ratings, 2016**



Source(s): IDOT, 2017c (annual average daily traffic, roadway network); IDOT, 2017d (sufficiency rating)


### SAFETY CONCERNs

Ensuring safe traveling conditions is of the utmost importance when planning and investing in transportation infrastructure. As a result of the existing design of this stretch of I-80 and its increasing traffic volumes, safety is a concern.

Data from the National Highway Traffic Safety Administration’s (NHTSA) Fatality Analysis Reporting System (FARS) was used in the following analysis. FARS provides annual data on crashes on a public roadway that resulted in a fatality. Data is gathered from police crash reports, death certificates,

coroner/medical examiner reports, and other sources (NHTSA, 2017). For this analysis, data was collected for I-80 near Joliet, in addition to I-80 near Tinley Park and I-57 near Matteson for comparison. Figures 8 and 9 illustrate the location of all fatal crashes on these roadways between 2001 and 2016.

**Figure 8: Fatal Crashes on I-80 near Joliet, 2001-2016**



**Figure 9: Fatal Crashes on I-80 and I-57 near Tinley Park and Matteson, 2001-2016**



The 16-mile stretch of I-80 near Joliet witnessed 37 fatal crashes in this timeframe. They stretch the length of the entire roadway, with the segments with noticeable bends near I-55 experiencing a higher number. It is interesting to note that the majority of crashes near Tinley Park and Matteson are grouped largely around intersections, whereas the crashes near Joliet are concentrated between intersections and near particularly curvy stretches of road. This indicates that the design of the roadway is contributing to the crashes.

While the consideration of all crashes since 2001 provides an overall snapshot of how the road has functioned in the past, Figures 10 and 11 only show crashes between 2010 and 2016 to offer an understanding of recent crash patterns. Likely as a result of minor roadway improvements, fewer crashes are evident near the large curves in the roadway in recent years, yet some remain, particularly west of I-55.

**Figure 10: Fatal Crashes on I-80 near Joliet, 2010-2016**



Source(s): IDOT, 2017c (annual average daily traffic, roadway network); NHTSA, 2016 (crashes)

**Figure 11: Fatal Crashes on I-80 and I-57 near Tinley Park and Matteson, 2010-2016**



Source(s): IDOT, 2017c (annual average daily traffic, roadway network); NHTSA, 2016 (crashes)

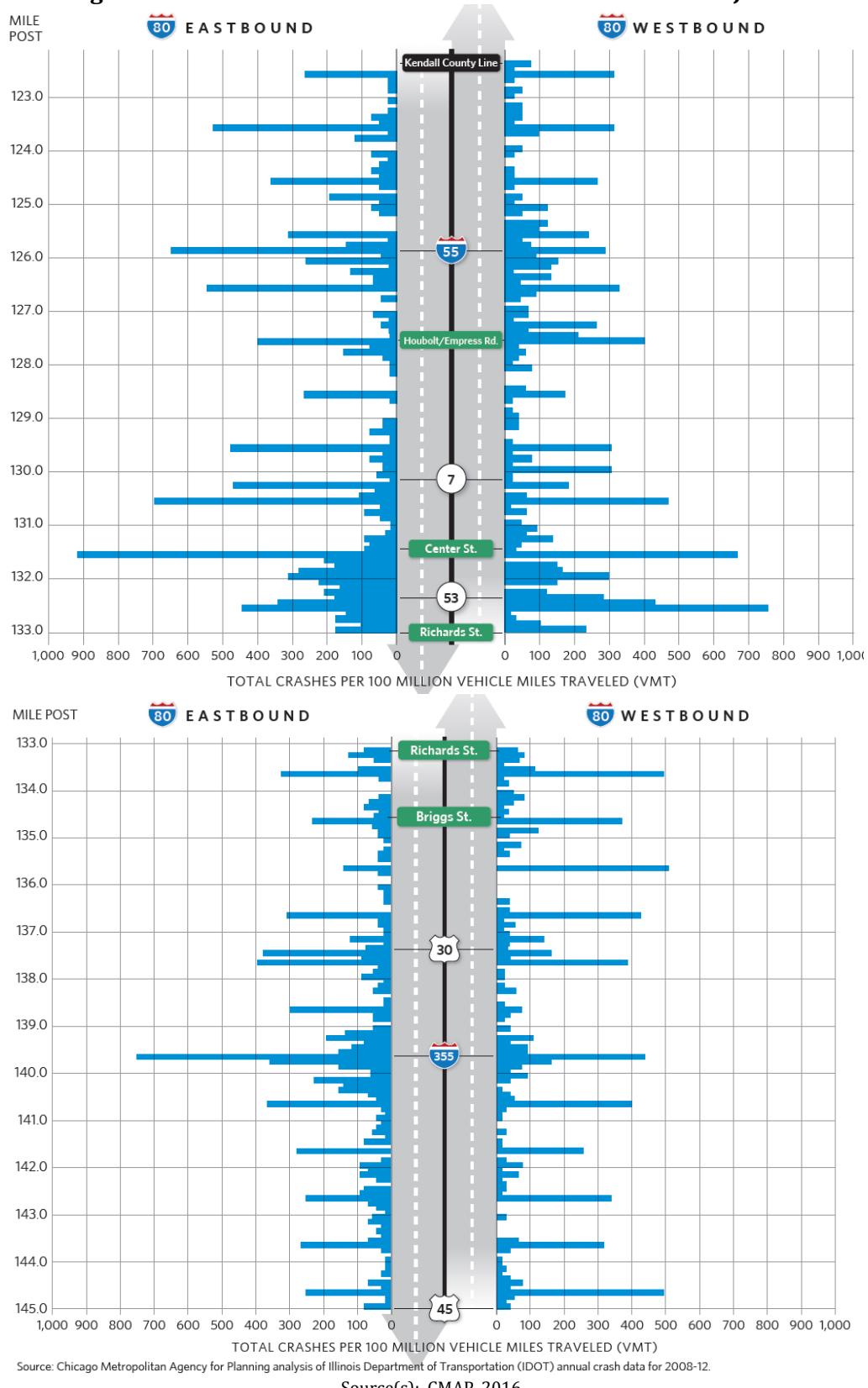
Figure 12 is a summary of all crash data from these three stretches of road. In order to facilitate an equal comparison, the stretch of I-80 near Joliet was divided into three portions. Between those three stretches, the portion between I-55 and US 52 has experienced both the most total crashes (16) and the most crashes since 2010 (6). When considering the total number of fatal crashes per mile, the stretch between I-55 and US 52 similarly ranks highest of all along I-80.

**Figure 12: Summary of Fatal Crashes on I-80 and I-57**

| Roadway                                          | Distance (miles) | AADT    | Fatal Crashes |           |           | Fatal Crashes / Mile |           |           | Fatal Crash Rate** |           |           |
|--------------------------------------------------|------------------|---------|---------------|-----------|-----------|----------------------|-----------|-----------|--------------------|-----------|-----------|
|                                                  |                  |         | Total         | 2010-2016 | 2001-2009 | Total                | 2010-2016 | 2001-2009 | Total              | 2010-2016 | 2001-2009 |
| I-80 in Joliet (Ridge Rd. to I-55)               | 4.5              | 54,100  | 9             | 2         | 7         | 2.0                  | 0.4       | 1.6       | 0.63               | 0.14      | 0.49      |
| I-80 in Joliet (I-55 to US 52)                   | 6.5              | 70,800  | 16            | 6         | 10        | 2.5                  | 0.9       | 1.5       | 0.60               | 0.22      | 0.37      |
| I-80 in Joliet (US 52 to US 30)                  | 5                | 74,800  | 12            | 4         | 8         | 2.4                  | 0.8       | 1.6       | 0.55               | 0.18      | 0.37      |
| I-80 in Tinley Park (Wolf Rd. to Ridgeland Ave.) | 6                | 130,508 | 14            | 7         | 7         | 2.3                  | 1.2       | 1.2       | 0.31               | 0.15      | 0.15      |
| I-57 (183rd St. to Sauk Trail)                   | 5.3              | 70,275  | 17            | 8         | 9         | 3.2                  | 1.5       | 1.7       | 0.78               | 0.37      | 0.41      |

\*Average Annual Daily Traffic

\*\*Crash rate expressed as crashes per 100 million vehicle miles of travel


Source(s): IDOT, 2017c (distance, AADT); NHTSA, 2016 (crashes)

The 16-mile stretch of I-80 near Joliet has not experienced an exceptionally high number of fatal crashes compared to the other roadways, and I-57 actually has a higher number of fatal crashes per mile. However, it is interesting to note that the portion of I-80 near Joliet did have a higher number of fatal crashes per mile between 2001 and 2009 than the stretch of I-80 slightly east of it near Tinley Park, yet that stretch has significantly higher traffic volumes. While this trend did not continue post 2010, it is reflected in the crash rates for recent years. The crash rate is an equation that measures the number of crashes per 100 million vehicle miles of travel by taking into account the total number of crashes, number of vehicles per day, and length of the roadway (FHWA, 2011). After accounting for the significantly higher amount of traffic near Tinley Park, it is clear that the stretch of I-80 near Joliet is less safe with crash rates for 2010-2016 ranging between 0.14 and 0.22 compared to 0.15 near Tinley Park.

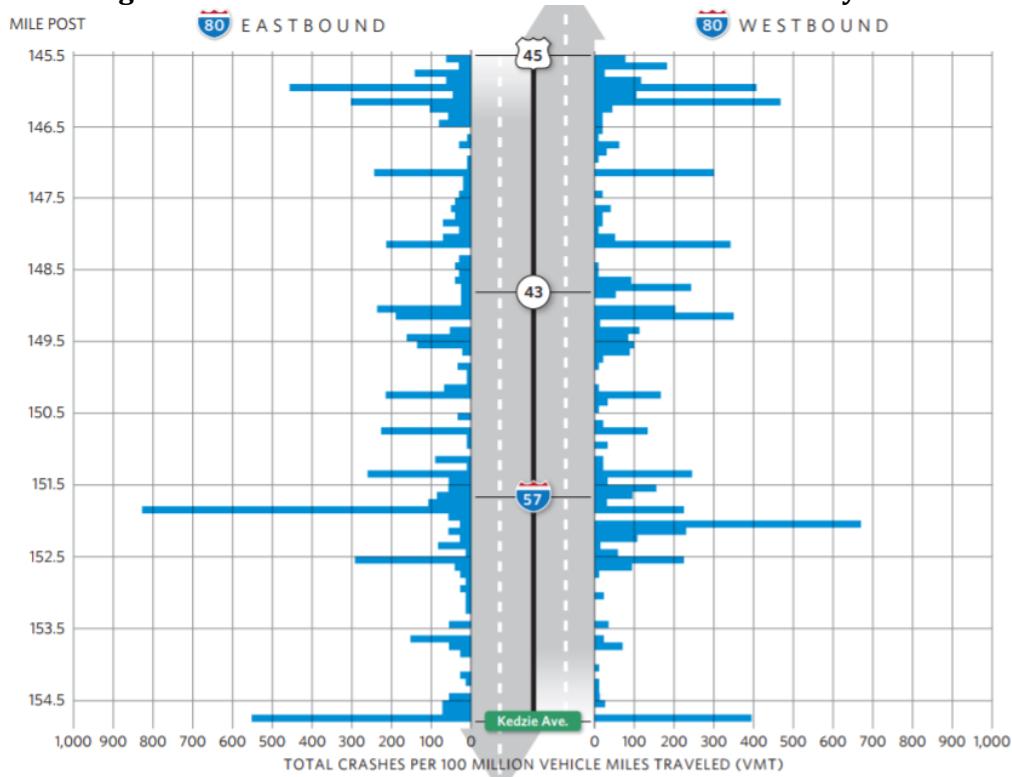

To provide a clearer picture of all crashes, Figures 13 and 14 illustrate the location and frequency of all crashes along I-80 near Joliet. Similar to the fatal crash trends shown in the previous maps, crash rates are higher surrounding I-55. Additionally, these graphics show a more consistent concentration of crashes near Center Street and Route 53 (also known as US 52), which is where a significant bend in the road occurs and motorists are crossing the Des Plaines River on a narrow bridge.

Figure 15 shows a similar graphic for the stretch of I-80 near Tinley Park. Most notably, crash rates near Tinley Park are significantly lower compared to the same roadway near Joliet. Crash rates near Tinley Park remain around 100 to 200 total crashes per 100 million vehicle miles traveled, with some peaks reaching over 300, and even fewer higher than 400. Conversely, the crash rates surrounding Joliet consistently reach 300 and peak as high as 900 in one area. Particularly between I-55 and Richards Street, crash rates are not only more consistent, but also steadily higher. This further contributes to the evidence that the stretch of I-80 near Joliet is more dangerous than the same roadway near Tinley Park.

**Figures 13 and 14: Illustration of Crash Rates on I-80 near Joliet**



**Figure 15: Illustration of Crash Rates on I-80 near Tinley Park**

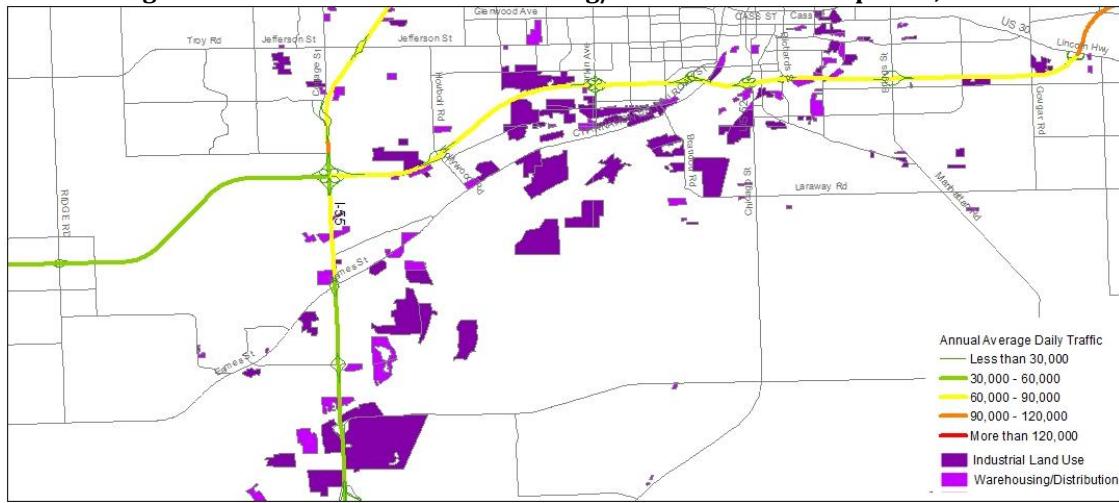


Source: Chicago Metropolitan Agency for Planning analysis of Illinois Department of Transportation (IDOT) annual crash data for 2008-12.

Source(s): CMAP, 2016

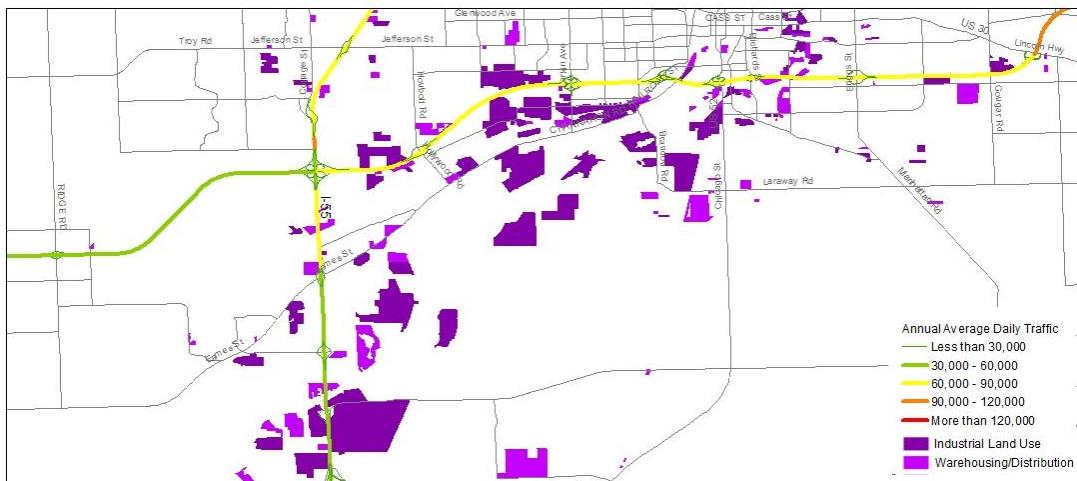
## A GROWING REGION

### *Past Growth*


The southwest suburbs of Chicagoland, which can be defined by Will and Kendall Counties, has experienced significant growth in the past and is only expected to continue growing. Figure 16 summarizes current population and employment figures for the six municipalities the proposed I-80 project would impact. Between 2000 and 2010, all municipalities – with the exception of Rockdale – grew at a higher rate than that of Will County and the CMAP region (defined as Cook, DuPage, Kane, Kendall, Lake, McHenry, and Will Counties). Most notably, Minooka and Shorewood grew at rates of 175% and 103%, respectively. Compared to the CMAP region, which only grew at a rate of 4%, it is remarkable how quickly the region is growing.

**Figure 16: Population and Employment, 2015**

| Municipality | Population 2015 | Employment 2015 | Population Change 2000-2010 |
|--------------|-----------------|-----------------|-----------------------------|
| Channahon    | 12,845          | 7,196           | 71%                         |
| Joliet       | 147,918         | 77,327          | 39%                         |
| Minooka      | 11,505          | 6,126           | 175%                        |
| New Lenox    | 25,024          | 14,030          | 37%                         |
| Rockdale     | 2,061           | 1,145           | 5%                          |
| Shorewood    | 16,354          | 8,787           | 103%                        |
| Will County  | 683,995         | 361,907         | 35%                         |
| CMAP Region  | 8,505,977       | 4,530,902       | 4%                          |


Source(s): CMAP, 2017b

**Figure 17: Industrial and Warehousing/Distribution Development, 2001**



Source(s): IDOT, 2017c (annual average daily traffic, roadway network); CMAP, 2001

**Figure 18: Industrial and Warehousing/Distribution Development, 2005**



Source(s): IDOT, 2017c (annual average daily traffic, roadway network); CMAP, 2005

**Figure 19: Industrial and Warehousing/Distribution Development, 2013\***



\*The technique used in taking the land use inventory changed after 2005, leading to slight differences in land use shapes  
 Source(s): IDOT, 2017c (annual average daily traffic, roadway network); CMAP, 2013

### *Future Growth*

Similarly, by the year 2040, Will County's population is expected to grow by 76%, a rate more than double that of the CMAP region (29%), while Kendall County is anticipated to grow by 100% in the same timeframe (Figure 20). Employment growth is even more significant, with Will and Kendall Counties expected to grow by 117% and 226%, respectively, while the CMAP region is only anticipated to grow by 31%.

**Figure 20: Population and Employment, 2010-2040**

|                | Population |            |        | Employment |           |        |
|----------------|------------|------------|--------|------------|-----------|--------|
|                | 2010       | 2040       | Growth | 2010       | 2040      | Growth |
| Will County    | 669,013    | 1,175,218  | 76%    | 201,854    | 437,110   | 117%   |
| Kendall County | 114,528    | 228,530    | 100%   | 22,066     | 71,830    | 226%   |
| CMAP Region    | 8,291,066  | 10,662,633 | 29%    | 3,802,984  | 4,987,839 | 31%    |

Source(s): CMAP, 2014b

### *Industrial and Warehousing/Distribution Development*

As an example of past growth, Figures 17-19 (previous page) illustrate the industrial and warehousing/distribution development surrounding the I-80 corridor in Joliet between 2001 and 2013. These land uses typically produce a large amount of trucks and additional traffic on interstate highways and should be of special interest when considering the needed I-80 improvements. Since 2001, the amount of land developed as industrial has clearly increased, particularly along the southern most portion of the maps.

As exemplified by these figures, the southwest suburbs of Chicagoland are growing at an incredibly fast pace. An increase in population and employment of such magnitude will only increase the need for reliable and efficient transportation systems.

## **ECONOMIC IMPACT**

In addition to the many safety and mobility benefits investment in I-80 near Joliet will render for the traveling public and region overall, it will also reap positive economic impacts. The following analysis considers the short-term economic impact from the construction of improvements to I-80.

This section uses IMPLAN (IMpact analysis for PLANning) to assess the net impact of these costs and benefits on economic activity and employment, particularly in Will County, Illinois. IMPLAN is an input-output software that estimates the multiplier, or ripple effect, of changes in industry spending or household expenditures based on U.S. Census Bureau data. In essence, IMPLAN follows each dollar flowing through the economy and uses recent trends to estimate the impact of future policy changes or events. IMPLAN is considered the “gold standard” for economic impact modeling (Vowels, 2012).

Figure 21 summarizes the variables input into the model. These costs represent the total project costs as outlined in CMAP's 2014-2019 Transportation Improvement Program (TIP). The TIP includes all projects that are considered regionally significant or are expected to receive federal funding. While the funding shown for fiscal years 2018-2020 has been programmed and improvements will be completed, the future fiscal year funding is only included for illustrative purposes. Funding has yet to be identified, but the proposed project remains consistent with CMAP's GO TO 2040 long-range plan, which identifies the construction of new lanes and rehabilitation of the existing roadway and bridges (CMAP, 2017a).

**Figure 21: IMPLAN Inputs**

|                          | <b>FY2018</b>       | <b>FY2019</b>       | <b>FY2020</b>      | <b>FY2021</b> | <b>Future FY</b>       | <b>Total</b>           |
|--------------------------|---------------------|---------------------|--------------------|---------------|------------------------|------------------------|
| Engineering              | -                   | \$3,750,000         | \$7,000,000        | -             | \$72,000,000           | \$82,750,000           |
| Right of Way             | -                   | -                   | -                  | -             | \$23,000,000           | \$23,000,000           |
| Construction             | \$38,290,000        | \$35,130,000        | -                  | -             | \$1,136,091,000        | \$1,209,511,000        |
| Construction Engineering | \$1,250,000         | \$2,500,000         | \$1,250,000        | -             | \$130,000,000          | \$135,000,000          |
| <b>Total</b>             | <b>\$39,540,000</b> | <b>\$41,380,000</b> | <b>\$8,250,000</b> | -             | <b>\$1,361,091,000</b> | <b>\$1,450,261,000</b> |

Source(s): CMAP, 2017a

Figures 22 and 23 summarize the economic impact of the initial funding for FY 2018-2020 and anticipated future impact if the project moves forward as identified in the TIP. As shown in Figure 22, the short-term fixes identified to be completed over the next three years will result in an additional 279 jobs per year and contribute over \$46 million to the local economy. More specifically, IMPLAN identifies the overall impact by direct, indirect, and induced effects, which differentiate between the source of the added value.

- Direct impacts represent the inherent additional expenditures associated with the construction process.
- Indirect impacts are the result of other businesses supplying goods and services to those performing the construction work.
- Induced impacts are the product of both project employees and indirect employees purchasing goods and services. This is also known as the induced economic effect.

In addition to the 131 and 35 direct construction and engineering jobs per year, respectively, the project will indirectly produce 51 jobs in industries such as manufacturing, finance, and legal services. Furthermore, the construction of these improvements will induce almost 60 jobs per year.

**Figure 22: Net Economic Impact for Construction Phase of FY18-20 Investments**

|                                 | <b>Compensation</b> |                 | <b>Total Value Added</b> |
|---------------------------------|---------------------|-----------------|--------------------------|
|                                 | <b>Jobs</b>         | <b>Per Job</b>  | <b>(GDP)</b>             |
| Direct: Construction Workers    | 395                 | \$64,660        | \$73,088,024             |
| Direct: Engineering and Related | 106                 | \$69,468        | \$15,570,833             |
| Indirect: Industry Purchases    | 155                 | \$53,983        | \$26,736,615             |
| Induced: Consumer Demand        | 180                 | \$38,808        | \$23,604,227             |
| <b>Total</b>                    | <b>836</b>          | <b>\$57,727</b> | <b>\$138,999,699</b>     |
| <b>Per Year</b>                 |                     |                 | <b>\$46,333,233</b>      |

\*All values in constant 2018 Dollars

Source(s): Author's analysis of total project cost inputs using IMPLAN

If the project progresses in future years, as planned by CMAP, the project will produce over 2,400 jobs per year (assuming a five-year construction period), with over 1,200 being construction workers and 266 engineering related (Figure 23); both of which offer compensation of over \$64,000. The project is also expected to contribute over \$400 million per year to the local economy.

As a result of these improvements (both currently programmed and anticipated future) the project will produce over \$13 million in state income tax revenue and almost \$15 million in state sales tax revenue (Figure 24). It should be noted that this assumes that all workers reside in Illinois. While that may produce a slight overestimate, the IMPLAN software has yet to be updated with Illinois' higher income tax rate, and thus helps to retain a conservative estimate.

**Figure 23: Net Economic Impact for Construction Phase of Future Investments**

|                                 | Compensation  |                 | Total Value Added      |
|---------------------------------|---------------|-----------------|------------------------|
|                                 | Jobs          | Per Job         | (GDP)                  |
| Direct: Construction Workers    | 6,025         | \$64,660        | \$1,115,894,863        |
| Direct: Engineering and Related | 1,334         | \$69,474        | \$195,693,557          |
| Indirect: Industry Purchases    | 2,214         | \$54,876        | \$392,825,319          |
| Induced: Consumer Demand        | 2,629         | \$38,809        | \$345,263,758          |
| <b>Total</b>                    | <b>12,201</b> | <b>\$57,841</b> | <b>\$2,049,677,497</b> |
| <b>Per Year**</b>               | <b>2,440</b>  |                 | <b>\$409,935,499</b>   |

\*All values in constant 2018 Dollars

\*\*Assuming 5 year construction period

Source(s): Author's analysis of total project cost inputs using IMPLAN

**Figure 24: Public Budget Impact for Construction Phase of FY18-20 and Future Investments**

| Public Budgets               | FY18-20            | Future FY           | Total               |
|------------------------------|--------------------|---------------------|---------------------|
| State Income Tax Revenue     | \$861,449          | \$12,598,682        | \$13,460,131        |
| State Sales Tax Revenue      | \$944,369          | \$13,864,787        | \$14,809,156        |
| Other State Government Taxes | \$503,818          | \$7,497,161         | \$8,000,979         |
| <b>Total</b>                 | <b>\$2,309,636</b> | <b>\$33,960,630</b> | <b>\$36,270,266</b> |

\*All values in constant 2018 Dollars

Source(s): Author's analysis of total project cost inputs using IMPLAN

## CONCLUSION

Transportation is the backbone to the economy. An efficient transportation network guarantees the public's access to jobs, schools, hospitals and so many other public services. It ensures our businesses can deliver their products to markets and that consumers can access those markets. Investments in reliable transportation systems are about improving our quality of life and our economic competitiveness. Without those investments, transportation systems will deteriorate, congestion will worsen, and residents and businesses will suffer.

As outlined in this report, I-80 near Joliet is a prime example of a roadway in need of improvements. Its design is no longer adequate for existing traffic patterns, exemplified by the 46 percent of bridges that are functionally obsolete. The road requires significant maintenance, with more than 26 percent of bridges considered structurally deficient. And safety remains a concern, as this stretch experiences higher crash rates than the same roadway in Tinley Park. Future growth is only going to worsen these conditions and put further stress on the roadway. Improvements are needed, yet funding is scarce.

As policymakers continue to debate new infrastructure funding solutions, roadways like I-80 should remain at the forefront of their minds. Countless crashes have occurred, lives have been lost, and – while it is far less significant – residents and businesses have suffered, and will continue to suffer, due to an inadequate and inefficient transportation system. It is important to remember: this roadway is only one example. Countless other projects across the state are equally as important, yet the same issue – inadequate funding – will continue to plague communities until changes are made.

## REFERENCES

Chicago Metropolitan Agency for Planning (CMAP). (2001). *Land Use Inventory for Cook, DuPage, Kane, Kendall, Lake, McHenry, and Will Counties, Illinois*.

Chicago Metropolitan Agency for Planning (CMAP). (2005). *Land Use Inventory for Cook, DuPage, Kane, Kendall, Lake, McHenry, and Will Counties, Illinois*. Version 1.0. Published: January 2009.

Chicago Metropolitan Agency for Planning (CMAP). (2013). *Land Use Inventory for Northeastern Illinois*. Version 1.0. Published: December 2016.

Chicago Metropolitan Agency for Planning (CMAP). (2014a). *Major Capital Projects*. GO TO 2040 Update Appendix.

Chicago Metropolitan Agency for Planning (CMAP). (2014b). *Socioeconomic Forecast Update Overview*. GO TO 2040 Update Appendix.

Chicago Metropolitan Agency for Planning (CMAP). (2016). *Expressway and Tollway Performance*.

Chicago Metropolitan Agency for Planning (CMAP). (2017a). *Transportation Improvement Program (TIP)*.

Chicago Metropolitan Agency for Planning (CMAP). (2017b). *Community Data Snapshots*.

Federal Highway Administration (FHWA). (2011). *Roadway Safety Information Analysis: A Manual for Local Rural Road Owners*.

Illinois Department of Transportation (IDOT). (2015). *I-80 Ridge Road to US Route 30 Study*.

Illinois Department of Transportation (IDOT). (2017a). *Interstate 80 Ridge Road to US Route 30*.

Illinois Department of Transportation (IDOT). (2017b). *FY 2018-2023 Proposed Highway Improvement Program*.

Illinois Department of Transportation (IDOT). (2017c). *Illinois Technology Transfer Network*.

Illinois Department of Transportation (IDOT). (2017d). *Bridge Information System*.

National Highway Traffic Safety Administration (NHTSA). (2016). *Fatality Analysis Reporting System*.

National Highway Traffic Safety Administration (NHTSA). (2017). *Fatality Analysis Reporting System (FARS): Analytical User's Manual 1975-2016*.

Vowels, Scott. (2012). *The Economic Impact of NCMSDC Certified Minority Businesses on Northern California*. The Northern California Minority Supplier Development Council.

## COVER PHOTO CREDITS

Allen, Liz. (2011). "IDOT Officials Drive Need for I-80 Reconstruction." *Morris Herald-News*.

Bowman, Barrett & Associates Inc. (2017). "I-80, Ridge Road to US Route 30."

Ginnard, Eric. (2017). "Bridge Hole Snarls I-80 Rush-Hour Traffic." *The Herald-News*.

Golembiewski, Jessica. (2017). "I-80 Crash 5." *CBS Chicago*.

Trafelet, Bonnie. (2017). "Traffic Backed Up on Westbound I-80 Due to a Crash Near Briggs Street in Joliet." *Chicago Tribune*.